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Abstract

In many engineering design problems it is possib’e to collect data

of the environmental disturbances which are acting upon our systems.
1 This data can be analyzed by determining its autocorrelation and

probability density function. When seeking solutions through simulation

it is desirable co be able to generate random time series having a

Ny 1

predetermined autocorrelation and probability density. This paper
de#cribes a method to control both simultaneously.

The proposed system is composed cf a linear filter, H(s), with
white Gaussian noise as innut, followed by a noniinear element £(x),
where x(t) is the output of H{s). The ouvtput of the system y(t) is
requirad to have a predetermined probatility density py(y) and a
predetermined normalized autocorrelation function py(-t). The non-
linearity £(x) is designed t{o give the required density py(y),>and

is relatively easy to design using the relationship
£(x) = F. Y[F (0]
y x

~1
where Fy is the inverse of Py(y) which is the cumulative distribution

function of y, and

S . x 4_53
: F(x) = f &2 _ de
L x ~~ J2r

is the cumulative Gaussian distribution.
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The nonlinearity f(x) may be designed manually or in a digital computer

by using a double table look up or in a hybrid computer system. I%{ cawn

then be stored in a variable diode function generator of an analog

computer.
This nonlinear element, however, changes the autocorrelation of

the input, x(t). The amount of change can be determined by

N‘ an o
Py 1) = nz"l -7 [px('r)]

where x2

«w P e aand

K =/ £GOH (x) &—2 ax
1 . n 2 ard

?

Hn(x) is the Hermite polynomial of order n.

This c.élculation can be done most conveniently in a hybrid
computer system.

The normalized autocorrelation of the intermediate stage, x(t),
Py (1) must now be approximated by a sum of exponentials:

~s1 | -syjt|
5x(t) = ae + age P

by using a hybrid computer system. Cne approach which may be used to
deternine the ay 's and si's is discussed by McDonough anu Huggins.
The filter H(s) may be obtained from the ai‘s and s;'s by spectral

factorizatioa.
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By forcing the system with white Ga: ssian ncise the system i
output, y(t) will have the desired autoco:relation function and i

probability density.
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Figure 1. A system to generate random time-series having a predetermined

autocorrelation and probability density. . ¢« « o ¢« ¢ ¢ ¢ ¢ ¢ « o o 2

Figurc 2. A demonstraﬁion of a double look-up method to design the

b, ¢
4 non-linear element, f£(X)e =+ ¢ ¢ o o o ¢ ¢ o ¢ o o 3 ¢t o ¢ s o o + 8 :
g

d Figure 2. An analog computer circuit to generate Ki‘s.

it 2

- X

Tt

- = 17 f(x) B (x) &2 dx
Kl\ - n \/2——;:— 2

e

o

£(x) stored in digital iine 1. stored in digital live 2. . 9

~
=}

Figure 4. An analog computer circuit to generate px(t). [Three terms].

3 K 2 k.2
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Figure 5. a.~1. Results of the experimental computer Tun. . . + o« « o o .z 13
App. 1., Figure 1. An analog computer circuit te implement H(s} for the

empleinAppendixl.000.00000..-00..0.000‘23
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1. Introduction

Most of our physical systems are subjected to environmental
disturbances. Xf we are supposed to improve vur systém through
simulation then we must have means to generate disturbances as they
appear in nature.

In most cases it is possible to record these random disturbances
for further analysis. .One way to analyze them is to determine their
autocorrelation function and their probability density. Our task now is
to design a system, which will generate a random time series
having a predetermined aytocorrelation and probability density. In other
words we nust be able to control both simultaneously.

Consider a system described in Figure 1. This system should be
so designed that a white Gaussian noilse as an input will give y(t)
ag an output having the desired normalized autocorrelation, py(T) and
the probability density, gy(y).-WGEking backwards from y(t), the instan-
taneous nonlinearity, f£(x) must be such as to guarantee the desired proba-
bility density, gy(y}with an input, x(t). The function x(t) is always
Gaussian, but it must have a normalized autocorrelation, px(r) such as to
give the required autocoxrelatioan, py(t) after going through the nonlinear

element £(x). The linear filter, H(s) must be so designed as to give

Caussian cutput, x(t) with zero mean and the required autocorrelation px(r)-

For simplicity, the variance of x(t) will be normalized to unity. The non-
linear element, £(x) can be designed first because gy(y)and gx(x)axe known.
Then Dx(T) can be determined hecause Oy(T) and f£{x) are known. Dx(T)

can now be approximated by a sum of exponentials. And finally, the

o, e B o 8 5 R Bt S oy wats
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linear filter may be obtained from the ai's and si's by spectral
factorization. We will now have a system which will continuously

generate random time series having the required properties.

2. Mathematical Derivations.

The nonlinecar element can be designed by using the relationship[3,5,6,7]
£(x) = F HF_(x)]
y X

where:
-1
Fy is the inverse of Fy(y)
Fy(y) is the integral of the desired distribution density, py(y).
F,(x) is the integral of the Gaussian distribution density, px(x) or
- g2

X e 2
F.(x)=17/ dg
X -0 {""—'—'2 T

Both cumulative density functions must be normalized so that the final

values of the integrals are one.
The relationship of the normalized autocorrelations px(r) and py(T)
can be determined from the approximate equation
Nk 2

2 n
oy P (¥) = nzl—%r {e, (1)]

where 03 is the variance of y(t) (obtainable from py(y))’

2
X
2

Kh - f f(x)Hn(x) — dx and

v= ¥ 2
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Hn(x) 1s the Hermite polynomial of order n{8]. The number of terms N, is

deternined by ‘he desired normalized error, ¢, in the approximation which

is given by N K2
o)
€= [1 - -]
a=1 ozn!
y

Since py(r) and f£(x) are known, px(r) can be derived. To design the filter,
H(s) the normalized autocorrelation function of the output, px(r) must be
approximated tc the desired level of accuracy. This can be done by finite
sums of exponentials [19] as described by R. N. McDonough and W. H. Huggins
[1j. In their approach, "... a give: number n of exponentials is considered,
such that the Integrated squared error is minimized over both the «n coeffi-
cients of the linear combination and the n exponents used."” [from the

abstract of ref. 1l.].

If a hybrid computer, however, is available, then the mechanization of
finding the exponents and coefficients can be simplified as discussed later
in this paper. Also it is believed by these authors, that for most engineering
cases only three exponentials are required.

The problem reduces now to finding the best estimate of px(r), 5x(r) of

the form:

-5,1 ~S,T
0x(1) = ae + a,e + aze » 0

These three exponents can be easily generated in an analog computex
and by using optimizing hybrid techniques the parameters ai's and si's can
be so adjusted as to give the minimum integrated squared error. Then the

power spectrum would be:

2a.s 2a,.s 2a,.s
e i 252 3°3
A T A T A I
51 2 37
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The filter H(s) may now be derived by spectral factorization which for the

three exponents case is given as follows: [2, 4]

As4~2332+c
2. B+VB? - ac
A
_IB+Vr¥ - ac
P
A
JB~ B2 - AC
Py = ....._._A_....__.. where

A= Z(alsl + ags, + 3383)

- 2 2 2 2 2 2
B alsls2 +alsls3 +325251 +a2szs3 +3383Sl +a3s352

- 2 2 2 2 2 2
c Z(atlsls2 83" + a,898; 5, + a4848;7s9 )

H{s)a[\IZalsl + 2azsy + 2a3s3)(s + py) (s + py)
(s + sl) (s + 89) (s +sq)

or moxe conveniently, defining

a :-JZalsl + Zazsz + 23353

Hs) = © (Pl‘sl) (Pz*sl) + Q(Pl“sz) (Pz‘sz) a(P1‘53)(P2‘53)

(s¥s1) (5751 (s3~5;) (sts,)(sy-s3) (s 3-S,) (sts,) (s1-53) (s,~53)
In the general case with M exponents, we have

M
p(1)= £ a, 17 0
X =1 i *

Then the power spectrum may be written in the form
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M 2a, s (pi s7)

i 7i i=1

d(s) = & 3 5= N
i=1 8/ -8 ) 5 (si - 82)

i=1

and therefore, the filter is given by

M-1
n (py +8)

i=1

H(s) %
n (s1 + 8)

i=1

It is easy to see, that to build the filter the same analog computer

circuit, which was used to find the ai's and si's, can be used just by

changing the setting of the three input potentiometars.

To clarify the method an example with an analytical solution is given

in Appendix No. 1.

3. Computerized Methods.

When seeking solutions for these types of problems through hybrid
computation the following steps have to be taken. First of all, two
distinctively different stages can be defined, namely: the design
stage and the stage of utilization of the designed system to generate
random time series.

A. Design Stage.

1) The desired probability density function py(y) is given
either in a numerical or in a zraph form. In the first
case quite often a digital computer subroutine is
available. In many cases it can be conveniently
generated in an analog computer. In the second case a
curve followsr or magnetic ink could be used. 1In any
event, the given p {y)must be generated, digitalized,
stored and plotted. It must be repetitively available

for further study. 6
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2)

4)

5)

b)

7

Gaussian probability densi

________ . e e Ly —— - - - v

available as a digital computer subroutine. It must be
generated and stored as in No, 1.

The stored py(y) nust be fed into analog comput.er for
integration to form Fy(y). This will then be seampled and
stored in a digital computer.

Caussian density function, px(x) is integrated and stored

as in No. 3 to form Fx(x).

The given autccorrelaticn function of the output, y(t) in

its normalized form py(-r) must be generated, digitalized,
stored and plotted. Notice step No. 1.

Because Fy(y) and Fx(x) now are available the non~linear ele~
ment, f£{x) can be designed and stwred in a digital computer.
This can be done by using a double-look-up method in a digital
computer as illustrated in Figure 2. In the final runs either
a digital computer or a varisble diode function generator in an
analog computer could be used to implement the required non-
linear element, £(x).

Tc generate Kn's, n = 0,1,...,N, ve need £(x), px(x) and the
Hermite polynomial, Bn(x). This can be done most conveniently
in an analog computer as of Figure 3. Notice that two previous
stages of fj(x) must be stored for the next set of K's. This
should be continued until the exror ¢ is satiéfactorily small,
[Hermite polynomials - H ., (x) = xH u(;t) - ol _,(x); By = 1,

B =x, Hy=x" -1, By = x> = 3x.] K, 1is left in this circuit

0
for checking purposes, since xo is equal to the mean of y, i.e.

Ky = J ypy(y)dy. -
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(Xl‘y 1)

Figure 2. A demcnstration of a double look~up method
te design the non~linear element, £(x).




Figure 3,

Ry = f £{x) Hy(x)
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f(x) stored in digitsl line 1.

An analog computer circuit to generate K 's.
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8) The normalized autocorrelation function of x(t), p, (1)
can now be generated, digitalized, stored and plotted:
} An illustration of how this can be done in a case
: where four values of Ki werc found te ba- j2iisfastory, see
2 Figure 4. p,(1) can be generated in C by letting a
servo-multiplyer, A, maintain the output, B, at zero.
9) To approximate px(1) by a sum of exponentials the
3 following method is used as a first trial. BREuild
exponential generating circuits in an analog computer,
¥ for example three of them. Take the absolute value of
k: error between the sum of the exponents and the stored value
of px(T) and integrate in an analog computer. By using
digital computer optimizing techniques readjust the
- servoset potentiometers representing the ai's and si's as

; to minimize the error. Print out the optimizing values

7
S

1 ]
of a;'s and 8y'S.

10) Design the filter H(s) as per Chapter 2. Notice that the

e HT RO

Aa
s

analog computer circuit in Step 9 can be used by merely
changing the values of the input potentiometers (and of

course by removing the initial conditioms).

i B. Stage of Generation of Random Time Series

1) Apply white Gaussian noise to the system. Plot 6y(r) and
compare with the given py(T).

2) Plot p‘y(y) and compare with the given py(y).

E 3) Plot the jmpulse response of the filter, H(s).

4) Piot py(r).
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4, Experimental Computer Run.

For this exparimentation an example, which has been analytically
solved in Appendix 1., was chosen. This example, however, was originally
designed for a fast hybrid system with a large memory. To fit the system
available, the hvbrid computer system of +he Department ¢f Iasdustrial and

Systems Engineering. University of Floxida, Gainesville, Florida [10.]

the time constant had to be increased. The required autocorzelation and

probability density of the cutput, y(t) were

-8lt]

py(T) = e where B8 =-.5

A o s S A A D Vs

pv(Y) = upniform between - 1 and + 1.

The linear filter, H{s)} changes now %o

. 1:06 .119
s+.5 s+l.5

H{s)

and Figure 5.2 shows, how the non-linear element, f£(x) wes designed: This
was stored in the variable diode function generator. A pexmanently stoved
subroutine war used to generate random-numbers having a uniform distribution
[Fig. 5.b.). Sequentially eight of these were averaged to give one value
for the required normally distribited data [Fig. 5.c.]}. As one can easily
sce there is a long range fluctuation present in this data. This irregular
fluctuation could be called a DC-component and its effect is detrimental
for the correllogram when one is forced to use such a short record

of data, only 630 data points, which means that the base of zn autocor-
relation function can be oply 315 data peints. To remove at least part

of this DC~compoment a double, exponential smoothing was used. This umeans
that the data [Fig. 5.c.] was run through an cxponential smoothing circuit

with a time constant of 1 sec., then the smoothed data was run again

12
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backwards through the same circuit to compensate for the shift. This
doubly smoothed data was then subtracted from the original Gaussian data
to forn the final white noise, w(t) to be used as the input to the linear
filter, H(S) (Fig. 5.d.). It is better, though not perfect. The output
of the filter, x(t) (Fig. 5.e.] was then adjusted in such a way as to have
a standard deviation of 25 volts and its autocorrclation function was
plotted [Fig. 5.f.]. x(t) was then fed into the non-linear element, f(x)
to give an output, v(t) [Fig. 5.g.)]. The autocorrelation function, py(T)
was determined [Fig. 5.h.] and the histogram of y(t) plotted [Fig. 5.1i.].
The hybrid computer system used in this experimentation and the method for
obtaining the autocorrollographs have been described ecarlier (10}, [11].
Considering the limited number of data points, which could be used
in this hybrid system, the histogram is surprisingly good. The autocorre-
lation plots show that the recmoval of the DC-component was not as good as
was hoped for. However, this discrepancy would disappear Jin time if a
continuous Gaussian noise source were available and longer record could be

used to check the autocorrelation functions.

5. Concluding Remarks.

A method has been developed to generate random time series having a
predetermined autocorrelation and probability density. Needless to say
that this research is still in its infancy. Also due to the lack of space
we are unable to show some interesting results concerning the shape of the
non-linearities and their effects to the autocorrelation function of x(t).
This research will definitely continue especially to find out what are the

limitations, if anyv, of this approach.

16
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Appendix No. 1.

A Simple Example,

An example, where arn analytical solutien zan be found is given
to test the validity of this wethod. Supposc that the output, y(t) is

required to have a probability density function of the foim: [8)

TN R RS e N
P, () = 35 exp {2 (9@,17)‘[@1:33» fzg.)] Yoo yizA . .
_ where erf"l is the inverse cf t:hefunction - S X S ” e

o
- ~ - : - T T : =
- ! . o \'V . s -
: © o =l -

N \ Ry('r) = R (0) e

1)
t

or in normalized form: g o ) > )
4 -gjt} . A - Sl
. py(T) =e ) - - \?(

1n this case the variance of y(t) is

N 2 | 1 7 - : T
eyz =R (0) = -2% -are &in ._..}...,T - T ] P
) 4o . .

L For a= 1 “the éérjsiﬁy of- ){(t);'.irsl ﬁtiifbtgn» in l(vA‘,Af)f *u R - . ) o

~;,R’,V(_‘!;)-s -~ arc sin*‘—-'z— -

wo

T = = o
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" Numerical example follows. R o el

D ;h, ~ & X = "1‘\=4‘.‘“ VS
) K¢ at.:”siniwﬁgf 2 = L5264

H(<) = .66

White noise with ‘RV(T) = §(1) s uged ag the input to the filter and

the non-linear element £(x) is of the form:
R
F(x) = 28 axf G5

where - ) u?
x "=
erf (r) = J e 2 du o

vty -

V2w ) o

‘Let us zssume that: s T
«u=1 and . 8= 5 then .~ - iS00 B 1 -

. 73.6; . 1(3‘ "‘4-56 a_ﬁéiéz“?

e
L

3
n

(5.08 .575 .o‘izs]
S5~ " svis Y oS K

3.34 _ _.378  .0082 - -
s+5 s+15 s+25
Ot'zly;two, terms required in this case.
25 , . . '




Coasogaently

7k ()
y {1) = (L aT) sin e
A1) = t7) sin o
wirich is approximately:
. - 13 L ~15 )
. — .
2 | " oAz ) kT{l 2‘2 Ry( )J
p (7} = (1 + o) i—) Ry (1) - F +
* 247 31 51
.
These terms provide enough accuracy.
Then if we -let: .
0)n -
Ry( ) 1
— = K = arc sin 7
242 to 4
b

we have:

7 -Blrl e
p (1) = (L + P K {; - 72

[

le] g -s8lel ]

e e

K2

Oy (s) ‘

2
(1 + o?) K8 . -

2 2.
G+ o) k6 26098767 (256%-52) - 12K (8%-52) (258%-5%)

g ‘z
v + N
(98%-5%)  12(258%-s%)]

12 L . (2-s%)

+ kY (:2-s2) (9p2-82)

(982-s2)  (2582-82)

4
¢
H
i
i
i
i
t
&
i
1
"
H
i
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e R T T T T YT TY

o VA o Y
(O +e®) ke et tae-1ax2eb ) - 2522 1403 - 15682 4

27 R,
* ol §or

12{p%-s%)  (apT-s")  (25p7-8") -
4. &
: sedy a4 (o609 ~ aeox? ety #Y
!
Thie will vesult in the- .équ ved- filter as:
B xp | KRt gk + Kas®
H(g) =
\ 12 (Bts) (38 +s) (56+s) 4
1l |
Bk _ where . o ‘
g ¥ = V/saeo - 300 k¥ + 9 k%, .veal for OK< % E
, N ; i} 4 ki N E::
: . K, =\ 24 - 12 l& K%, real for 035 K< Vi %
f . B 3. 3;
il . \/ {(&08-156'?“ ey Ky Ky}, real for 0K <% 3
? T or: i
k ‘ B, , B ] 3
& H(s) 2 :
& ’ St3B  =¥58
where
1 - 8
5 a‘;(l~ 3K2 + 9K3
L K - 5Ky + 25K
7 B = /Jl 2 3 1‘
g 3 ) 8 -
o | 27 $
S.f ~ -
3 - N - 2 - - e 4
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H(s). The output of the system y(t) is required to have a predetermined _prbbabilit)j
v density py(y) and a predvtermiaed normalized autocorrelatior “unctiom p_(r). The ‘
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Abstract {continued)

wiicre I’v"l is the inverse of l-‘y(y) which is the cumulative distribution function
of y, 2nd

is the cumulative Gaussian distribution.
The nonlinearity f(x) may be designed manually or ia a digital cowmputer by using
a double table look up or in a hybrid computex systém. It can then be stored in
a varxable diode ft.nction generator of an analog computer.

This nonlinear element, however, changes the autqcorrelation of the input,
x(t). The amount of change can be determined by “ \

1 xnz' n
p (1) = % - [p (=2}
y el B ‘ x
. where T
-2
” e 2
R = ‘x)H (x) == dx - and
n -0 2-r R

E >ItB {x)- is the Hexmite polynomial of drder n.

Thls caiculat:.on can be done ‘most conveniently in a hybrid computet system. -

I‘ne rormalized- autor.ox:"elation of the mtemehate stage, x{ t), Py (t) must

g ;nd'a be appmxnaa..ed by a mm- of exponer.tials. : ] :

. -8yt ] ' :-:s*zltfi
px(T) - al + 32? + oo

vy using a hybrid computer system. One approach which may be used to determine
the ai's and s 1‘g§ is discussed by McDonough and Huggins. The filter H(s) may be

- obtained from the ai's and si‘s by spectral factorization.

By forcing the system with whice Gaussian noise the system output, y(t) will
have the desired autocorrelation function and probability déns:lty.
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